Actualizado a
· Lectura:
Las modernas estructuras marinas de hormigón se desmoronan a lo largo de las décadas, mientras que numerosos muelles y espigones romanos de 2.000 años de antigüedad siguen perdurando y de hecho son más sólidos que cuando se construyeron. Alrededor del año 79 d.C., el autor romano Plinio el Viejo escribió en su Naturalis historia que las estructuras de hormigón de los puertos, expuestas al constante embate de las olas de agua salada, se convierten "en una única masa de piedra, inexpugnable para las olas y cada día más fuerte". El misterio de esta capacidad de resistencia ha sido desentrañado: el agua de mar que se filtra a través del hormigón favorece el desarrollo de minerales entrelazados que le proporcionan al hormigón una cohesión añadida, según explica la Universidad de Utah. El estudio ha sido publicado en American Mineralogist.
El hormigón romano consistía en una mezcla de ceniza volcánica, cal y agua de mar, un mortero con un agregado de trozos de roca volcánica. La combinación de ceniza, agua y cal viva producía la denominada reacción puzolánica (debe su nombre al municipio napolitano de Pozzuoli) y con este conglomerado de hormigón se erigieron edificios como el Panteón, el Mercado de Trajano y diferentes estructuras marinas. La interrelación de minerales entre el mortero y el agregado ha evitado la formación de fisuras longitudinales a lo largo de los siglos, mientras que con el cemento Portland las superficies de los agregados no reactivos (que son inertes, que no producen reacción) no hacen más que propagar las fisuras.
Los investigadores, entre ellos la geóloga Marie Jackson, han concluido lo siguiente: que el agua de mar se filtra en el hormigón de los muelles y espigones romanos, disolviendo componentes de la ceniza volcánica y permitiendo el desarrollo de nuevos minerales procedentes de los fluidos filtrados altamente alcalinos, particularmente la tobermorita aluminosa y la phillipsita. Esta tobermorita aluminosa tiene una composición rica en silíceo, similar a los cristales que se forman en las rocas volcánicas. Los cristales tienen formas laminares que refuerzan la matriz cementante y las placas entrelazadas incrementan la resistencia del hormigón ante una fractura por fragilidad. "Se trata de un sistema que se desarrolla en un intercambio químico abierto con el agua de mar", destaca Jackson.